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Pearson�s Correlation 
Coefficient ( r )
� A measure of the tendency of the largest 

measurements for one variable to be 
associated with the largest measurements 
of the other variable
� The sample correlation r estimates the 

population correlation ρ (rho)
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Pearson�s Correlation 
Coefficient ( r )
� Range of r : -1 ≤ r ≤ 1

� r = 1 : perfect positive correlation
� a graph of X vs Y will be a straight line with 

positive slope
� r = -1 : perfect negative correlation

� a graph of X vs Y will be a straight line with 
negative slope

� r = 0 : no correlation
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Pearson�s Correlation 
Coefficient ( r )
� Pearson�s correlation coefficient with linear data
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Pearson�s Correlation 
Coefficient ( r )
� Pearson�s correlation coefficient with variable 

data
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Pearson�s Correlation 
Coefficient ( r )
� Correlation and Independence

� Independent variables will have ρ = 0
� (and r tending to be close to 0)

� However, uncorrelated variables are not 
necessarily independent

� Correlation is a measure of linear trend in the 
mean of one variable in groups defined by the 
other

� It is possible that a nonlinear association exists 
between two variables, and that the first order 
trend is a zero slope
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Pearson�s Correlation 
Coefficient ( r )
� Pearson�s correlation coefficient with nonlinear 

data
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Pearson�s Correlation: Stata 
Commands

–“correlate varlist”
� Correlation of all pairs of variables
� Missing data deleted on a casewise basis

–“pwcorr varlist”
� Correlation of all pairs of variables
� Missing data deleted on a pairwise basis
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Example: Correlation in FEV 
Data
. corr subjid age fev height sex smoke
(obs=654)

| subjid     age     fev  height     sex   smoke
-------+-----------------------------------------------
subjid | 1.0000

age |-0.0112  1.0000
fev |-0.0147  0.7565  1.0000

height |-0.0317  0.7919  0.8681  1.0000
sex | 0.0407 -0.0291 -0.2084 -0.1590  1.0000

smoke |-0.0601 -0.4043 -0.2454 -0.2804 -0.0756  1.0000

� Some of these correlations don�t make much 
sense

� subjid is a nominal variable
� sex, smoke are binary variables
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Regression Setting

12

Two Variable Setting
� Many statistical problems can be regarded as 

considering the association between two 
variables 
� Response variable (outcome, dependent variable)
� Grouping variable (predictor, independent variable)
� The scientific question is addressed by comparing the 

distribution of the response variable across groups 
that are defined by the grouping variable

� Within each group, the value of the grouping variable is 
constant
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Correspondence to Number of 
Samples
� In introductory statistics courses, there is a 

tendency to characterize problems according to 
the number of samples and whether the 
samples are independent 
� The correspondence between that nomenclature and 

the two variable setting is based on the type of 
variable used as the grouping variable

� Constant: One sample problem
� Binary: Two sample problem
� Categorical: k sample problem (e.g., ANOVA)
� Continuous: Infinite sample problem

� Regression

14

Infinite Sample Problem
� When the grouping variable is continuous, there 

are conceptually an infinite number of groups 
� E.g., when investigating the blood pressure across 

age groups
� If measured with enough precision, no two people have 

exactly the same age
� It is, of course, rare that we would have an infinite 

number of groups in our sample
� (and possibly not even in our population)

� It is common to have 1 (or fewer) subjects in a 
particular group in our sample
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Example: SBP and Age
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Regression Methods
� Regression can be thought of as 

extending one and two sample statistics 
(e.g., the t test) to the infinite sample 
problem
� While we don�t really ever have (or care) 

about an infinite number of samples, it is 
easiest to use models that would allow that in 
order to handle

� Continuous predictors of interest
� Adjustment for other variables
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Regression vs Two Sample 
Methods
� A very convenient feature of the 

regression methods is that when used with 
a binary grouping variable they reduce to 
the corresponding two variable methods
� Linear regression with a binary predictor

� t test with equal variance 
� (approx t test with unequal variance when using 

�robust� standard errors)

18

Regression vs Two Sample 
Methods
− �Everything is regression.�
− Scott Emerson
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Linear Regression Setting: 
Example
� Association between blood pressure and 

age 
� Scientific question: 

� Does aging affect blood pressure?
� Statistical question:

� Does the distribution of blood pressure differ 
across age groups?

� Acknowledges variability of response
� Acknowledges uncertainty of cause and effect

» (Differences could be related to calendar time 
instead of age)

20

Linear Regression Setting 
Example
� Association between blood pressure and 

age (cont.) 
� Definition of variables

� Response: Systolic blood pressure
� continuous

� Predictor of interest (grouping): Age
� continuous 

» an infinite number of ages are possible
» we probably will not sample every one of them
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Linear Regression Setting: 
Example
� Association between blood pressure and age 

(cont.) 
� Answering the question is possible if we try to assess 

linear trends in, say, average SBP by age
� Estimate best fitting line to average SBP within age groups

� An association will exist if the slope (β1) is nonzero
� In that case, the average SBP will be different across 

different age groups

( ) AgeAgeSBPE ×+= 10 ββ( ) AgeAgeSBPE ×+= 10 ββ
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Linear Regression Setting: 
Example

Age (years)

Sy
st

ol
ic

 B
lo

od
 P

re
ss

ur
e 

(m
m

H
g)

70 80 90 100

80
10

0
12

0
14

0
16

0
18

0
20

0

Age (years)

Sy
st

ol
ic

 B
lo

od
 P

re
ss

ur
e 

(m
m

H
g)

70 80 90 100

80
10

0
12

0
14

0
16

0
18

0
20

0



Applied Regression Analysis, June, 2003 June 24, 2003

(c) 2002, 2003, Scott S. Emerson, M.D., 
Ph.D. Part 2:12

23

Linear Regression Setting: 
Example
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Linear Regression Setting 
Example
� Association between blood pressure and 

age (cont.) 
� The regression model thus produces 

something similar to �a rule of thumb�

� E.g., �Normal SBP is 100 plus half your age�
( ) AgeAgeSBPE ×+= 5.0100( ) AgeAgeSBPE ×+= 5.0100
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Linear Regression Setting 
Example

Actual estimates (and inference) 
. regress sbp age

Number of obs =     735
Source |      SS    df     MS         F(  1,   733) =   10.63
Model |    4056     1 4056.4         Prob > F      =  0.0012

Residual |  279740   733  381.6         R-squared     =  0.0143
Total |  283796   734  386.6         Adj R-squared =  0.0129

Root MSE      =  19.536

sbp |  Coef. St.Err.    t     P>|t|   [95% Conf Int]
age |   .431   .132    3.26   0.001    .172    .691

_cons | 98.949  9.889   10.01   0.000  79.535 118.364

( ) AgeAgeSBPE ×+= 43.09.98( ) AgeAgeSBPE ×+= 43.09.98
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Linear Regression Setting 
Example
� We can make inference about the regression 

estimates
� The regression output provides

� estimates
� Intercept: estimated mean when age = 0
� Slope: estimated difference in average SBP for two groups 

differing by one year in age
� standard errors
� confidence intervals
� P values testing for

� Intercept of zero (who cares?)
� Slope of zero (test for linear trend in means)
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Linear Regression Setting 
Example
� In this example we are primarily interested in the 

slope
� �From linear regression analysis, we estimate that for 

each year difference in age, the difference in mean 
SBP is 0.43 mmHg. A 95% CI suggests that this 
observation is not unusual if the true difference in 
mean SBP per year difference in age were between 
0.17 and 0.69 mmHg. Because the P value is P < 
.0005, we reject the null hypothesis that there is no 
linear trend in the average SBP across age groups.�
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Regression: Necessary 
Ingredients
� Response variable

� The distribution of this variable will be 
compared across the groups

� Linear regression models the mean of this variable
� Log transformation of the response corresponds to 

modeling the geometric mean
� Notation:

� It is extremely common (99 of 100 statisticians 
agree) to use Y to denote the response variable 
when discussing general methods
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Regression: Necessary 
Ingredients
� Predictor (grouping) variables

� Group membership is measured by a variable
� Notation

� When not using mnemonics, I will tend to use X to 
denote a predictor variable

� (When we proceed to multiple regression, I will use 
subscripts to denote different predictors)

30

Regression: Necessary 
Ingredients
� Regression model

� We typically consider a �linear predictor function� that 
is linear in the modeled predictors

� Expected value (mean) of Y for a particular value of X

� Interpretation of the �regression parameters� 
� Intercept β0: Mean Y for a group with X=0

� Quite often not of scientific interest
» Often outside range of data, sometimes impossible

� slope β1: Diff in mean Y for groups differing in X by 1 unit 
� Usually our measure of association between Y and X

( ) XXYE ×+= 10| ββ( ) XXYE ×+= 10| ββ
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Simple Linear Regression
� Simple linear regression of response Y on 

predictor X
� Mean for an arbitrary group derived from model
� Interpretation of parameters by considering special 

cases
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Simple Linear Regression
� Interpretation of the model

� In simple linear regression, we assume that a graph 
of average response within a group (on Y axis) versus 
value of predictor within a group would be a straight 
line

� Algebra: A line is of form y = mx + b
� In the presence of variation of response within groups 

(i.e., in the real world), the line is describing the 
central tendency of the data in a scatterplot of the 
response versus the predictor
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Simple Linear Regression: 
Example
� Trends in mental function with age

� Cardiovascular Health Study
� A cohort of  ~5,000 elderly subjects in four 

communities followed with annual visits
� Mental function measured at baseline by Digit 

Symbol Substitution Test (DSST)
� Question: How does performance on DSST differ 

across age groups

34

Scatterplot of DSST versus 
AGE
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Descriptives for DSST in Age 
Strata
Age N  Nonmsgn Mean Std Dev
67 4 4 39.25 11.03
68 22 21 44.05 12.50
69 79 79 46.62 12.40
70 72 71 44.85 12.63
71 69 68 47.09 10.85
72 75 75 42.19 12.86
73 64 64 43.22 10.06
74 39 39 41.15 12.21
75 44 44 40.84 15.76
76 32 32 39.03 11.41
77 39 37 40.11 12.69
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Descriptives for DSST in Age 
Strata
Age N  Nonmsgn Mean Std Dev
78 36 36 38.56 11.11
79 33 33 36.61 9.78
80 28 28 36.21 8.90
81 19 19 32.95 11.84
82 15 14 30.93 8.94
83 12 12 35.08 9.06
84 14 12 29.92 12.18
85 9 9 35.56 9.37
86 7 7 18.43 5.71
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Descriptives for DSST in Age 
Strata
• AgeN  Nonmsgn Mean Std Dev
• 87 5 4 31.50 8.50
• 88 5 5 33.60 12.72
• 89 5 4 26.25 6.70
• 90 3 1 26.00
• 91 1 1 38.00
• 92 2 2 33.50 7.78
• 93 1 1 30.00
• 97 1 1 10.00
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Plot of Mean DSST versus AGE
• sort age
• by age: egen mdsst = mean (dsst)
• graph dsst mdsst age, s(oT) c(.l) j(1)

age
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Estimation of Least Squares 
Line

regress dsst age 
(ANOVA table output omitted)

Number of obs =     723
F(  1,   721) =  116.81
Prob > F      =  0.0000
R-squared     =  0.1394
Adj R-squared =  0.1382
Root MSE      =  11.796
-------------------------------------------------------
dsst | Coef. StErr      t     P>|t|       [95% CI]
------+------------------------------------------------

age | -.938   .087   -10.81   0.000    -1.11   -.768
_cons |   111.  6.48    17.11   0.000    98.25   124.
--------------------------------------------------------
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Interpretation of Stata Output

� Estimates of regression parameters
� Intercept is labeled �_cons�

� Estimated intercept: 111.
� Slope is labeled by variable name: �age�

� Estimated slope: -.938
� Estimated linear relationship:

� Average DSST by age given by

[ ] iii AgeAgeDSSTE ×−= 938.0111   [ ] iii AgeAgeDSSTE ×−= 938.0111   
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Superimposed Plot of Least 
Squares Line
• predict fdsst
• graph dsst mdsst fdsst age, s(oTS) c(.ll) 
j(1)

age
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Interpretation of Stata Output
� Scientific interpretation of the intercept

� Estimated mean DSST for newborns is 111
� Pretty ridiculous estimate

� We never sampled anyone less than 67
� Maximum value for DSST is 100
� Newborns would in fact (rather deterministically) score 0

� In this problem, the intercept is just a mathematical 
construct to fit a line over the range of our data

[ ] iii AgeAgeDSSTE ×−= 938.0111   [ ] iii AgeAgeDSSTE ×−= 938.0111   
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Interpretation of Stata Output
� Scientific interpretation of the slope

� Estimated difference in mean DSST for two groups 
differing by one year in age is -0.938, with older group 
averaging a lower score

� For 5 year age difference: 5 x -0.938 = - 4.69
� For 10 year age difference: - 9.38

� (If a straight line relationship is not true, we can still 
interpret the slope as an average difference in mean 
DSST per one year difference in age)

[ ] iii AgeAgeDSSTE ×−= 938.0111   [ ] iii AgeAgeDSSTE ×−= 938.0111   
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Interpretation of Stata Output
� Comments on scientific interpretation of the 

slope
� Note that I express this as a difference between 

group means rather than a change with aging
� We did not do a longitudinal study

� To the extent that the true group means have a linear 
relationship, this interpretation applies exactly

� If the true relationship is nonlinear
� The slope estimates the �first order trend�  for the sampled age 

distribution
� We should not regard the estimates of individual group means 

as accurate
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Alternative Representation of 
Model
� Sometimes linear regression models are 

expressed in terms of the response instead of 
the mean response

� The response is divided into two parts
� The mean (systematic part or �signal�)
� The �error� (random part or �noise�)

� difference between the observed value and the corresponding 
group mean

� εI is called the error
� The error distribution describes the within-group 

distribution of response

iii XY εββ +×+= 10           Model iii XY εββ +×+= 10           Model
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Interpretation of Stata Output
� Estimates for error distribution

� The error distribution is estimated from the residuals

� The mean of the errors is assumed to be 0
� The sample standard deviation of the residuals is reported as 

the �Root Mean Squared Error�
� Thus we estimate within group SD of 11.796 in the 

DSST vs age example
� Classical linear regression: SD for each age group
� Robust standard error estimates: An average across groups

( )ii XY ×+−= 10i
ˆˆê          Residual ββ( )ii XY ×+−= 10i
ˆˆê          Residual ββ
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Inferential Uses of Regression 
Models
� Regression models can be used to answer the most 

commonly encountered statistical questions
� Prediction

� Estimating a future observation of response Y
� Often we use the mean or geometric mean

� Quantifying distributions
� Describing the distribution of response Y within groups by 

estimating the mean E( Y | X )
� Comparing distributions across groups

� Distributions differ across groups if the regression slope parameter 
β1 is nonzero

( ) XXYE ×+= 10| ββ( ) XXYE ×+= 10| ββ
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Statistical Validity of Inference
� Inference (CI, P values) about associations is 

based on  two general types of assumptions
� Assumptions about independence of observations

� Classically: All observations are independent
� Robust standard error estimates: Allow correlated 

observations within identified clusters
� Assumptions about variance of observations within 

groups
� Classically: Equal variances across groups
� Robust standard error estimates: Allow unequal variances 

across groups
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Statistical Validity of Inference

� Inference (CI, P values) about mean 
response in specific groups has a further 
assumption
� Assumption about adequacy of linear model

� Classically OR robust standard error estimates: 
The mean response in groups is linear in the 
modeled predictor

� (We can model transformations of the measured 
predictor)

50

Statistical Validity of Inference
� Inference (prediction intervals, P values) about 

individual observations in specific groups has 
still another assumption
� Assumption about distribution of errors within each 

group
� Classically: The distribution of errors follows the same normal 

distribution within each group
� Possible extension: The distribution of errors follows the 

same distribution within each group, though it need not be 
normal

� This extension is not implemented in any software that I know 
of

� (Inappropriate inference if robust standard error estimates 
are necessary for unequal variances)
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Inference About Associations
� Inference about associations is far more robust 

than estimation of group means or individual 
predictions
� If the response and predictor of interest were totally 

independent, the mean response in each group would 
be the same

� A flat line would describe the mean response across groups 
(and a linear model is correct)

� A nonzero slope suggests the presence of an association 
between mean response and predictor

� The assumption of straight line relationships in the modeled 
(transformed) parameter need not hold exactly for examining 
such associations

� (I am not modeling the data; instead I am testing for trends in 
the parameter � looking at �contrasts�)

52

Interpreting Inference for 
Association
� Robust interpretation of �positive� studies 

(statistically significant nonzero slopes)
� �Statistically significant slope�

� The observed data is atypical of a setting in which the mean 
response is the same across all groups

� Data suggests evidence of a trend toward larger (smaller) 
means in groups having larger values of the predictor

� The slope estimate (and CI) describe some sort of an 
average trend over the distribution of predictors in the 
sample

� (Only if a straight line is a good description of the trend in the 
parameters can we also use the model to predict the mean or 
individual observations for each group)
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Interpreting Inference for 
Association
� When using regression to detect associations, 

the interpretation of �lack of statistical 
significance� must take into account all 
possibilities

� There may be no association
� There may be an association but not in the parameter 

considered (i.e, the mean response)
� There may be an association in the parameter considered, 

but the best fitting line has a zero slope (a curvilinear 
association in the parameter)

� There may be a first order trend in the parameter, but we 
lacked statistical precision to be confident that it truly exists 
(type II error)

54

Regression Inference in Stata
� Stata allows inference based on either classical 

linear regression or robust standard error 
estimates
� Classical linear regression

• regress respvar predictor
� E.g., regress dsst age

� Robust standard error estimates
• regress respvar predictor, robust

� E.g., regress dsst age, robust

� The two approaches differ in CI and P values, not 
estimates
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Interpretation of Stata Output
� Inference with regression models

� Linear regression intercept and slope parameters are 
asymptotically normally distributed, thus all we need 
to know in addition to the estimate (and interpretation) 
is the standard error

� Stata automatically provides
� standard error estimates
� two-sided P values of a test that the regression parameters are 

0
� 95% confidence intervals
� and a lot of other statistics, most of which (to my mind) are 

unnecessary to see

56

Classical Linear Regression
regress dsst age 

Number of obs =     723
F(  1,   721) =  116.81
Prob > F      =  0.0000
R-squared     =  0.1394
Adj R-squared =  0.1382
Root MSE      =  11.796
-------------------------------------------------------
dsst | Coef. StErr      t     P>|t|       [95% CI]
------+------------------------------------------------

age | -.938   .087   -10.81   0.000    -1.11   -.768
_cons |   111.  6.48    17.11   0.000    98.25   124.
--------------------------------------------------------
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Classical Linear Regression
� Inference about an association based on slope

� Estimated trend in mean DSST by age is an average 
difference of -.938 for one year differences in age

� T statistic:                     -10.81    (Who cares?)
� P value:                       < .0001
� CI for trend:             -1.11, -0.768
� Conclusion: This is not what we would expect to see 

when no association exists in mean DSST by age

58

Robust Standard Error 
Estimates

regress dsst age, robust 
Number of obs =     723
F(  1,   721) =  134.35
Prob > F      =  0.0000
R-squared     =  0.1394
Root MSE      =  11.796
-------------------------------------------------------

|       Robust
dsst | Coef. StErr     t     P>|t|       [95% CI]
------+------------------------------------------------

age | -.938   .081   -11.59   0.000    -1.10   -.779
_cons |   111.  6.10    18.19   0.000    99.00   123.
--------------------------------------------------------
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Robust Standard Error 
Estimates
� Inference about an association based on slope

� Estimated trend in mean DSST by age is an average 
difference of -.938 for one year differences in age

� T statistic:                     -11.59    (Who cares?)
� P value:                       < .0001
� CI for trend:             -1.10, -0.779
� Conclusion: This is not what we would expect to see 

when no association exists in mean DSST by age
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Choice of Inference Using 
Regression
� Which inference is correct?

� Classical linear regression and robust 
standard error estimates differ in the strength 
of necessary assumptions

� As a rule, if all the assumptions of classical linear 
regression hold, it will be more precise

� (Hence, we will have greatest precision to detect 
associations if the linear model is correct)

� The robust standard error estimates are, however, 
valid for detection of associations even in those 
instances
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Choosing the Correct Model
− �All models are false, some models are 

useful.�
−George Box
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Choosing the Correct Model

− �In statistics, as in art, never fall in love 
with your model.�
− Unknown
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Model Checking

� Much statistical literature has been 
devoted to means of checking the 
assumptions for regression models
� I believe model checking is generally fraught 

with peril, as it necessarily involves multiple 
comparisons
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Model Checking

− �Blood suckers hide �neath my bed�
− �Eyepennies�, Mark Linkous (Sparklehorse)
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Model Checking

� We cannot reliably use the sampled data 
to assess whether it accurately portrays 
the population
� We are worried about what data we might not 

have seen
� It is not so much the monsters that we see that 

scare us, but the goblins in the closet
� (But we do worry more when we see a tendency to 

outliers in the sample or clear departures from the 
model)
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Choice of Inference Using 
Regression
� My general recommendation: There is relatively 

little to be lost and much accuracy to be gained 
in using the robust standard error estimates
� Avoids the need for �model checking�

� (And �model checking� has too large an element of data 
driven analysis for my taste)

� More logical scientific approach
� Minimizes the need for assumptions that presume more 

detailed knowledge than the question we are trying to answer
� E.g., if we don�t know how means might differ, why presume 

that we know how variances and higher moments behave?
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Choice of Inference Using 
Regression
� Inference about estimation of group 

means or individual predictions should be 
interpreted extremely cautiously
� The dependence on knowing the correct 

model and distribution means that we cannot 
be as confident in the estimates and inference

� Nevertheless, such estimates are often the best 
approximations

� Interpolation to unobserved groups is less risky 
than extrapolation outside the range of predictors


